Development of Driver and Color Control System for High-Power RGB LED
نویسنده
چکیده
A bilevel driving approach was proposed in the literature for mitigating the energy wastage associated with driving LEDs at high peak current. The main idea is to introduce two drive parameters, i.e., high/low PWM current levels and duty cycles, that give rise to a 2-D luminosity control capability. The same idea was later generalized to an n-level driving approach for maximizing the electrical-to-light conversion efficiency of LEDs. Although previous uses of the n-level driving approach have been focusing on improving the luminous efficacy of LEDs, it is shown in this thesis that its 2-D luminosity control feature can also lead to a significant improvement in color resolution when applied to driving RGB LEDs, hence making it well suited for applications in large-area LED display panels. In comparison to the first prototype driver proposed by the inventor of the driving approach, a more practical implementation of the complex 2-D driving approach with digital microcontroller is demonstrated. The various technical aspects of the driving approach, including luminous efficacy, color resolution, and color stability over dimming, are discussed in this thesis with the aid of experimental results. This thesis also presents a method of controlling the white color point in red/green /blue (RGB) LED driver system. In contrast to conventional systems where the average driving currents of the primary-color LEDs can become saturated when the LEDs have sufficiently aged, and causes the resulting white color point to go out of regulation, the proposed method avoids this problem by adjusting the color set points when a pre-defined threshold current is reached by one or more of the primary-color LEDs. It is shown that the method can effectively maintain the white color point of the RGB LED at the desired value when the LEDs are subjected to an accelerated ageing through repetitive current stress cycles.
منابع مشابه
An Isolated Off-Line High Power Factor Electrolytic Capacitor-Less LED Driver with Pulsating Output Current
One of the most efficient lighting technology is based on light-emitting diodes (LEDs). Common LED drivers with AC-input (50-60Hz) usually require a bulk electrolytic capacitor to decrease low-frequency ripple in the output. However, the critical element that limits the lifespan of the LED driver is the electrolytic capacitor. An isolated off-line LED driver is proposed in this paper, in which ...
متن کاملColor Stability of a Microhybrid Resin Composite Polymerized with LED and QTH Light Curing Units
Introduction: Discoloration of resin composites is a common reason for replacement of these restorations. The aim of this study was to eva-luate the influence of different light curing de-vices on color stability of a microhybrid resin composite. Materials and Methods: 80 disc-shaped speci-mens (8 mm in diameter, 2-mm height) were fabricated from filtek Z250 resin composite. Specimens wer...
متن کاملTime-Stable Red, Green, and Blue Light-Emitting Diode Backlighting Control Using Time-Varying Transform Matrix
o m p p c B bstract. This paper proposes a driving current control method for back light unit (BLU), consisting of red, green, and blue (RGB) ight-emitting diodes (LEDs), whereby a RGB optical sensor is used o check the output color stimulus variation to enable a time-stable olor stimulus for light emission by the RGB LED BLU. First, to btain the present color stimulus information of the RGB LE...
متن کاملTime-division color electroholography using one-chip RGB LED and synchronizing controller.
We propose time-division based color electroholography with a one-chip RGB Light Emitting Diode (LED) and a low-priced synchronizing controller. In electroholography, although color reconstruction methods via time-division have already been proposed, the methods require an LCD with a high refresh rate and output signals from the LCD for synchronizing the RGB reference lights such as laser sourc...
متن کاملDevelopment of Average Model for Control of a Full Bridge PWM DC-DC Converter
This paper presents a detailed small-signal and transient analysis of a full bridge PWM DC-DC converter designed for high voltage, high power applications using an average model. The derived model is implemented in a typical system and used to produce the small-signal and transient characteristics of the converter. Results obtained in the analysis of the high voltage and high power design examp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013